#机器学习

机器学习数学系列(2):微分选讲

主要内容:极限:  复习极限记号,无穷大无穷小阶数微分学(尚不讲积分):  复习函数求导,泰勒级数逼近  牛顿法与梯度下降法Jensen不等式   复习凸函数,Jensen不等式的证明 一些记号说明: 1极限 通俗语言适合说给对方听,数学记号适合写给对方看,精确描述比较啰嗦但是非...

机器学习数学系列(1):机器学习与数学基础知识

目录:机器学习基础:  机器学习的分类与一般思路微积分基础:  泰勒公式,导数与梯度概率与统计基础:  概率公式、常见分布、常见统计量线性代数基础:  矩阵乘法的几何意义  这是一张非常著名的图,请仔细挖掘其信息量。以期它在整体上指引我们的学习。1 机器学习基础1.1机器学习分类有监督学习...

机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

编辑|MingMing 尽管机器学习的历史可以追溯到1959年,但目前,这个领域正以前所未有的速度发展。最近,我一直在网上寻找关于机器学习和NLP各方面的好资源,为了帮助到和我有相同需求的人,我整理了一份迄今为止我发现的最好的教程内容列表。通过教程中的简介内容讲述一个概念。避免了包括书籍章节涵盖范围广,以及研...

机器学习资料大汇总

作者:我爱机器学习(52ml.net)注:本页面主要针对想快速上手机器学习而又不想深入研究的同学,对于专门的researcher,建议直接啃PRML,ESL,MLAPP以及你相应方向的书(比如NumericalOptimization,GraphicModel等),另外就是Follow牛会牛paper,如果谁有兴趣也可...
代码星球 ·2021-02-16

【机器学习】朴素贝叶斯

本文参考了该博客的实例,但该博客中的朴素贝叶斯公式计算错误,评论中的也不对,所以,重新写一篇。作者:baidu-liuming原文链接:带你彻彻底底搞懂朴素贝叶斯公式更多参考:朴素贝叶斯算法原理小结一.朴素贝叶斯   朴素贝叶斯中的朴素一词的来源就是假设各特征之间相互独立。这一假设使得朴素...
代码星球 ·2021-02-14

【机器学习】K-Means聚类算法原理

 原文链接:K-Means聚类算法原理作者:刘建平Pinard K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means+...

【机器学习】K-近邻算法(KNN)

 K-近邻算法(KNN)概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是一种...

机器学习排序算法:RankNet to LambdaRank to LambdaMART

使用机器学习排序算法LambdaMART有一段时间了,但一直没有真正弄清楚算法中的所有细节。学习过程中细读了两篇不错的博文,推荐给大家:梯度提升树(GBDT)原理小结徐博FromRankNettoLambdaRanktoLambdaMART:AnOverview但经过一番搜寻之后发现,目前网上并没有一篇透彻讲解该算法的...

强大而精致的机器学习调参方法:贝叶斯优化

贝叶斯优化用于机器学习调参由J.Snoek(2012)提出,主要思想是,给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布。简单的说,就是考虑了上一次参数的信息**,从而更好的调整当前的参数。他与...

机器学习sklearn19.0聚类算法——Kmeans算法

一、关于聚类及相似度、距离的知识点 二、k-means算法思想与流程三、sklearn中对于kmeans算法的参数四、代码示例以及应用的知识点简介(1)make_blobs:聚类数据生成器 sklearn.datasets.make_blobs(n_samples=100,n_features=2,...

机器学习算法

计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列)。通俗讲,计算机给人干活,但它不是人,甚至不如狗懂人的需要(《小羊肖恩》里的狗是多么聪明可爱又忠诚于主人)。那怎么让它干活呢,那就需要程序员用某种编程语言...
代码星球 ·2021-02-12

机器学习如何选择模型 & 机器学习与数据挖掘区别 & 深度学习科普

今天看到这篇文章里面提到如何选择模型,觉得非常好,单独写在这里。  更多的机器学习实战可以看这篇文章:http://www.cnblogs.com/charlesblc/p/6159187.html 参考这篇文章:https://www.zhihu.com/question/3055726...

机器学习(一) ---- 最优化理论基础

  之前学习机器学习和数据挖掘的时候,很多都是知道这些算法的设计机制,对数学推导和求解过程依然是一知半解,最近看了一些机器学习算法的求解和各种优化算法,也发现了这些算法设计和公式推导背后的数学精妙之处和随处可见的最优化的影子。还是决定从最优化理论开始补起,本文主要内容如下:  &...

机器学习(二)--- 分类算法详解

感觉狼厂有些把机器学习和数据挖掘神话了,机器学习、数据挖掘的能力其实是有边界的。机器学习、数据挖掘永远是给大公司的业务锦上添花的东西,它可以帮助公司赚更多的钱,却不能帮助公司在与其他公司的竞争中取得领先优势,所以小公司招聘数据挖掘/机器学习不是为了装逼就是在自寻死路。可是相比Java和C++语言开发来说,机器学习/数据...

机器学习(三)--- scala学习笔记

 Scala是一门多范式的编程语言,一种类似Java的编程语言,设计初衷是实现可伸缩的语言、并集成面向对象编程和函数式编程的各种特性。  Spark是UCBerkeleyAMPlab所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有HadoopMapRed...
代码星球 ·2021-02-12
首页上一页12345...下一页尾页