#百面机器学习

Deep Learning(深度学习)学习笔记整理系列之(三)

DeepLearning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion1.02013-04-08 声明:1)该DeepLearning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看...

Deep Learning(深度学习)学习笔记整理系列之(二)

DeepLearning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion1.02013-04-08 声明:1)该DeepLearning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看...

Deep Learning(深度学习)学习笔记整理系列之(一)(转)

DeepLearning(深度学习)学习笔记整理系列zouxy09@qq.comhttp://blog.csdn.net/zouxy09作者:Zouxyversion1.0 2013-04-08 声明:1)该DeepLearning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引...

机器学习(一) ---- 最优化理论基础

  之前学习机器学习和数据挖掘的时候,很多都是知道这些算法的设计机制,对数学推导和求解过程依然是一知半解,最近看了一些机器学习算法的求解和各种优化算法,也发现了这些算法设计和公式推导背后的数学精妙之处和随处可见的最优化的影子。还是决定从最优化理论开始补起,本文主要内容如下:  &...

机器学习(二)--- 分类算法详解

感觉狼厂有些把机器学习和数据挖掘神话了,机器学习、数据挖掘的能力其实是有边界的。机器学习、数据挖掘永远是给大公司的业务锦上添花的东西,它可以帮助公司赚更多的钱,却不能帮助公司在与其他公司的竞争中取得领先优势,所以小公司招聘数据挖掘/机器学习不是为了装逼就是在自寻死路。可是相比Java和C++语言开发来说,机器学习/数据...

机器学习(三)--- scala学习笔记

 Scala是一门多范式的编程语言,一种类似Java的编程语言,设计初衷是实现可伸缩的语言、并集成面向对象编程和函数式编程的各种特性。  Spark是UCBerkeleyAMPlab所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有HadoopMapRed...
代码星球 ·2021-02-12

机器学习系列------1. GBDT算法的原理

GBDT算法是一种监督学习算法。监督学习算法需要解决如下两个问题:1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准确。GBDT算法需要最终学习到损失函数尽可能小并且有效的防止过拟合。以样本随时间变化对某件事情发生的变化为例,如下几副图形象...

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

版权声明:   本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com,本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博: @leftnoteasy 前言:...

Gradient Boosting Decision Tree学习

GradientBoostingDecisionTree,即梯度提升树,简称GBDT,也叫GBRT(GradientBoostingRegressionTree),也称为MultipleAdditiveRegressionTree(MART),阿里貌似叫treelink。首先学习GBDT要有决策树的先验知识。Gradi...

Deep Learning(深度学习)学习笔记整理(二)

本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流。 [1]Deeplearning简介[2]DeepLearning训练过程[3]DeepLearning模型之:CNN卷积神经网络推导和实现[4]DeepLearning模型之:CNN的反向求导及练习[5]DeepLearning...

Deep Learning(深度学习)学习笔记整理

申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html     4.2、初级(浅层)特征表示      既然像素级的特征表示方法没有作用,那...

机器学习中的算法——决策树模型组合之随机森林与GBDT

前言:决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等。但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的。美国金融银行业的大数据算法:随机森林模型+综合模型...

机器学习(四)--- 从gbdt到xgboost

 gbdt(又称GradientBoostedDecisionTree/GrdientBoostedRegressionTree),是一种迭代的决策树算法,该算法由多个决策树组成。它最早见于yahoo,后被广泛应用在搜索排序、点击率预估上。   xgboost是陈天奇大牛新开发的...
代码星球 ·2021-02-12

SpringCloud学习笔记(5)----Spring Cloud Netflix之Eureka的服务认证和集群

  1.引入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId><scope>t...

SpringCloud学习笔记(4)----Spring Cloud Netflix之Eureka的配置

  Eureka的客户端需要加入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId><...
首页上一页...3738394041...下一页尾页