#深度操作系统官网

深度学习:参数(parameters)和超参数(hyperparameters)

 由模型通过学习得到的变量,比如权重和偏置  根据经验进行设定,影响到权重和偏置的大小,比如迭代次数、隐藏层的层数、每层神经元的个数、学习速率等 ...

使用 Linux Mint 作为主要操作系统的一些个人常用软件

本篇文章讲一下一些Linux上的应用,多数为日常生活娱乐用的软件,同时也会讲一点开发工具,对于有兴趣继续研究Linux的可以参考一下。软件的安装方式1.SoftwareManager2.deb包3.AppImage4.二进制文件5.编译日常软件1.截图工具Shutter2.图像处理GIMP3.同步盘Nextcloud4...

深度学习最全优化方法总结比较及在tensorflow实现

版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/u010899985/article/details/81836299梯度下降算法针对凸优化问题原则上是可以收敛到全局最优的,因为此时只有唯一的局部最优点。而实际上深度学...

深度学习剖根问底: Adam优化算法的由来

在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法?这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法。我们应该使用哪种优化器?在构建神经网络模型时,选择出最佳的优化器,以便快速收敛并正确学习,同时调整内部参数,最...

深度排序模型概述(一)Wide&Deep/xDeepFM

本文记录几个在广告和推荐里面rank阶段常用的模型。广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征。模型即使到现在DeepFM类的方法,其实也都很简单。模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征、尝试自动学习交叉特征而非手动、尝...

【深度学习】深入理解Batch Normalization批标准化

/这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下BatchNormalization的原理,以下为参考网上几篇文章总结得出。  BatchNormalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证...

深度学习调参技巧

完整机器学习实现代码GitHub欢迎转载,转载请注明出处https://www.cnblogs.com/huangyc/p/10111234.html欢迎沟通交流:339408769@qq.com1.前言2.深度学习中的主要参数3.自动调参3.1GirdSearch3.2RandomSearch3.3BayesianO...
代码星球 ·2021-02-12

深度学习调参技巧总结

做dl也有一段时间了,积累了一些经验,也在网上看到一些别人的经验。 为了面试,结合知乎上面的问答,我也总结了一下,欢迎大家补充。知乎深度学习调参有哪些技巧?一.初始化 有人用normal初始化cnn的参数,最后acc只能到70%多,仅仅改成xavier,acc可以到98%。二.从理解CNN网络以产生...

深度学习网络调参技巧

本文转载自:https://zhuanlan.zhihu.com/p/24720954?utm_source=zhihu&utm_medium=social 转载请注明:炼丹实验室之前曾经写过一篇文章,讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得。不过由于一般深度学习实验,相比...

深度学习调参策略(二)

超参数(Hyper-Parameter)是困扰神经网络训练的问题之一,因为这些参数不可通过常规方法学习获得。神经网络经典五大超参数:学习率(LeraningRate)、权值初始化(WeightInitialization)、网络层数(Layers)单层神经元数(Units)、正则惩罚项(Regularizer|Norm...
代码星球 ·2021-02-12

深度学习调参策略(一)

经常会被问到你用深度学习训练模型时怎么样改善你的结果呢?然后每次都懵逼了,一是自己懂的不多,二是实验的不多,三是记性不行忘记了。所以写这篇博客,记录下别人以及自己的一些经验。IlyaSutskever(Hinton的学生)讲述了有关深度学习的见解及实用建议: 获取数据:确保要有高质量的输入/输出数据集,这个数...
代码星球 ·2021-02-12

深度学习_调参经验

面对一个图像分类问题,可以有以下步骤:1.建立一个简单的CNN模型,一方面能够快速地run一个模型,以了解这个任务的难度卷积层1:卷积核大小3*3,卷积核移动步长1,卷积核个数64,池化大小2*2,池化步长2,池化类型为最大池化,激活函数ReLU。卷积层2:卷积核大小3*3,卷积核移动步长1,卷积核个数128,池化大小...
代码星球 ·2021-02-12

深度学习调参经验汇总

/此篇文章是在原创教程这个栏目下,但实际上是一篇汇总整理文章。相信大家在做深度学习时对调参尤为无奈,经验不足乱调一通,或者参数太多无从下手,我也如此。希望通过此文汇总网上一些调参的经验方法,供大家参考。此文会对网上每一篇调参文章做简练的总结与提炼,以此为此文的组成单元,并附上原文的链接。如果遇到不对的地方,欢迎指正~本...

深度学习调参经验

作者:CaptainJack链接:https://www.zhihu.com/question/25097993/answer/127472322来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。我现在的工作内容主要就是使用CNN做CV任务.干调参这种活也有两年时间了.我的回答可能更多的还是...
代码星球 ·2021-02-12
首页上一页...34567...下一页尾页