#非监

《百面机器学习》拾贝----第五章:非监督学习

相比于监督学习,非监督学习的输入数据没有标签信息,需要通过算法模型来挖掘数据内在的结构和模式。非监督学习主要包含两大类学习方法:数据聚类和特征变量关联。其中,聚类算法往往是通过多次迭代来找到数据的最优分割,而特征变量关联则是利用各种相关性分析方法来找到变量之间的关系。01K均值聚类与分类问题不同,聚类是在事先并不知道任...

5.1_非监督学习之sckit-learn

K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。1.首先,随机设K个特征空间内的点作为初始的聚类中心。2.然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心。3.接着,在所有的数据都被标记过聚类中心之后,...

非监督学习

从本节开始,将正式进入到无监督学习(UnsupervisedLearning)部分。无监督学习,顾名思义,就是不受监督的学习,一种自由的学习方式。该学习方式不需要先验知识进行指导,而是不断地自我认知,自我巩固,最后进行自我归纳,在机器学习中,无监督学习可以被简单理解为不为训练集提供对应的类别标识(label),其与有监...
代码星球 ·2020-11-27