需求
在检索系统中,遇到了分组统计(Grouping/GroupBy)的需求,比如将搜索结果按照栏目分类,统计每个栏目下各有多少条结果。以前的做法很愚蠢,先发起一次search统计出有多少组,然后在每个组里发起一次search;这样在有N组的情况下一共执行了N+1此搜索,效率低下。
改进
最近发现Lucene提供了分组的功能,是通过Collector实现的,最多可以在2次search的时候得出结果,如果内存够用,CachingCollector还可以节约一次查询。
两次检索
第一次
第一次的目的是收集符合条件的组,创建一个FirstPassGroupingCollector送入search接口即可。在此处使用CachingCollector对其cache的话,可以节省一次查询:
- TermFirstPassGroupingCollector c1 = new TermFirstPassGroupingCollector("catalog", groupSort, topNGroups);
- boolean cacheScores = true;
- double maxCacheRAMMB = 16.0;
- CachingCollector cachedCollector = CachingCollector.create(c1, cacheScores, maxCacheRAMMB);
- searcher.search(query, cachedCollector);
第二次
第二次的目的是收集每个组里面符合条件的文档,此时利用第一次的分组结果创建TermSecondPassGroupingCollector,并执行/replay搜索。
完整实例
- package com.hankcs;
-
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field;
- import org.apache.lucene.document.TextField;
- import org.apache.lucene.index.DirectoryReader;
- import org.apache.lucene.index.IndexReader;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.index.IndexWriterConfig;
- import org.apache.lucene.queryparser.classic.QueryParser;
- import org.apache.lucene.search.*;
- import org.apache.lucene.search.grouping.GroupDocs;
- import org.apache.lucene.search.grouping.SearchGroup;
- import org.apache.lucene.search.grouping.TopGroups;
- import org.apache.lucene.search.grouping.term.TermAllGroupsCollector;
- import org.apache.lucene.search.grouping.term.TermFirstPassGroupingCollector;
- import org.apache.lucene.search.grouping.term.TermSecondPassGroupingCollector;
- import org.apache.lucene.store.Directory;
- import org.apache.lucene.store.RAMDirectory;
- import org.apache.lucene.util.BytesRef;
- import org.apache.lucene.util.Version;
-
- import java.util.Collection;
-
-
- /**
- * 演示faceting
- *
- * @author hankcs
- */
- public class FacetingDemo
- {
- public static void main(String[] args) throws Exception
- {
- // Lucene Document的主要域名
- String mainFieldName = "text";
- // Lucene版本
- Version ver = Version.LUCENE_48;
-
- // 实例化Analyzer分词器
- Analyzer analyzer = new StandardAnalyzer(ver);
-
- Directory directory;
- IndexWriter writer;
- IndexReader reader;
- IndexSearcher searcher;
- //索引过程**********************************
- //建立内存索引对象
- directory = new RAMDirectory();
-
- //配置IndexWriterConfig
- IndexWriterConfig iwConfig = new IndexWriterConfig(ver, analyzer);
- iwConfig.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);
- writer = new IndexWriter(directory, iwConfig);
- for (int i = 0; i < 100; ++i)
- {
- Document doc = new Document();
- doc.add(new TextField(mainFieldName, "Banana is sweet " + i, Field.Store.YES));
- doc.add(new TextField("catalog", "fruit", Field.Store.YES));
- writer.addDocument(doc);
- }
- for (int i = 0; i < 50; ++i)
- {
- Document doc = new Document();
- doc.add(new TextField(mainFieldName, "Juice is sweet " + i, Field.Store.YES));
- doc.add(new TextField("catalog", "drink", Field.Store.YES));
- writer.addDocument(doc);
- }
- for (int i = 0; i < 25; ++i)
- {
- Document doc = new Document();
- doc.add(new TextField(mainFieldName, "Hankcs is here " + i, Field.Store.YES));
- doc.add(new TextField("catalog", "person", Field.Store.YES));
- writer.addDocument(doc);
- }
- writer.close();
-
- //搜索过程**********************************
- //实例化搜索器
- reader = DirectoryReader.open(directory);
- searcher = new IndexSearcher(reader);
-
- String keyword = "sweet";
- //使用QueryParser查询分析器构造Query对象
- QueryParser qp = new QueryParser(ver, mainFieldName, analyzer);
- Query query = qp.parse(keyword);
- System.out.println("Query = " + query);
-
- //搜索相似度最高的5条记录并且分组
- int topNGroups = 10; // 每页需要多少个组
- int groupOffset = 0; // 起始的组
- boolean fillFields = true;
- Sort docSort = Sort.RELEVANCE; // groupSort用于对组进行排序,docSort用于对组内记录进行排序,多数情况下两者是相同的,但也可不同
- Sort groupSort = docSort;
- int docOffset = 0; // 用于组内分页,起始的记录
- int docsPerGroup = 2;// 每组返回多少条结果
- boolean requiredTotalGroupCount = true; // 是否需要计算总的组的数量
-
- // 如果需要对Lucene的score进行修正,则需要重载TermFirstPassGroupingCollector
- TermFirstPassGroupingCollector c1 = new TermFirstPassGroupingCollector("catalog", groupSort, topNGroups);
- boolean cacheScores = true;
- double maxCacheRAMMB = 16.0;
- CachingCollector cachedCollector = CachingCollector.create(c1, cacheScores, maxCacheRAMMB);
- searcher.search(query, cachedCollector);
-
- Collection<SearchGroup<BytesRef>> topGroups = c1.getTopGroups(groupOffset, fillFields);
-
- if (topGroups == null)
- {
- // No groups matched
- return;
- }
-
- Collector secondPassCollector = null;
-
- boolean getScores = true;
- boolean getMaxScores = true;
- // 如果需要对Lucene的score进行修正,则需要重载TermSecondPassGroupingCollector
- TermSecondPassGroupingCollector c2 = new TermSecondPassGroupingCollector("catalog", topGroups, groupSort, docSort, docsPerGroup, getScores, getMaxScores, fillFields);
-
- // 是否需要计算一共有多少个分类,这一步是可选的
- TermAllGroupsCollector allGroupsCollector = null;
- if (requiredTotalGroupCount)
- {
- allGroupsCollector = new TermAllGroupsCollector("catalog");
- secondPassCollector = MultiCollector.wrap(c2, allGroupsCollector);
- }
- else
- {
- secondPassCollector = c2;
- }
-
- if (cachedCollector.isCached())
- {
- // 被缓存的话,就用缓存
- cachedCollector.replay(secondPassCollector);
- }
- else
- {
- // 超出缓存大小,重新执行一次查询
- searcher.search(query, secondPassCollector);
- }
-
- int totalGroupCount = -1; // 所有组的数量
- int totalHitCount = -1; // 所有满足条件的记录数
- int totalGroupedHitCount = -1; // 所有组内的满足条件的记录数(通常该值与totalHitCount是一致的)
- if (requiredTotalGroupCount)
- {
- totalGroupCount = allGroupsCollector.getGroupCount();
- }
- System.out.println("一共匹配到多少个分类: " + totalGroupCount);
-
- TopGroups<BytesRef> groupsResult = c2.getTopGroups(docOffset);
- totalHitCount = groupsResult.totalHitCount;
- totalGroupedHitCount = groupsResult.totalGroupedHitCount;
- System.out.println("groupsResult.totalHitCount:" + totalHitCount);
- System.out.println("groupsResult.totalGroupedHitCount:" + totalGroupedHitCount);
-
- int groupIdx = 0;
- // 迭代组
- for (GroupDocs<BytesRef> groupDocs : groupsResult.groups)
- {
- groupIdx++;
- System.out.println("group[" + groupIdx + "]:" + groupDocs.groupValue); // 组的标识
- System.out.println("group[" + groupIdx + "]:" + groupDocs.totalHits); // 组内的记录数
- int docIdx = 0;
- // 迭代组内的记录
- for (ScoreDoc scoreDoc : groupDocs.scoreDocs)
- {
- docIdx++;
- System.out.println("group[" + groupIdx + "][" + docIdx + "]:" + scoreDoc.doc + "/" + scoreDoc.score);
- Document doc = searcher.doc(scoreDoc.doc);
- System.out.println("group[" + groupIdx + "][" + docIdx + "]:" + doc);
- }
- }
- }
- }
输出
- Query = text:sweet
- 一共匹配到多少个分类: 2
- groupsResult.totalHitCount:150
- groupsResult.totalGroupedHitCount:150
- group[1]:[66 72 75 69 74]
- group[1]:100
- group[1][1]:0/0.573753
- group[1][1]:Document<stored,indexed,tokenized<text:Banana is sweet 0> stored,indexed,tokenized<catalog:fruit>>
- group[1][2]:1/0.573753
- group[1][2]:Document<stored,indexed,tokenized<text:Banana is sweet 1> stored,indexed,tokenized<catalog:fruit>>
- group[2]:[64 72 69 6e 6b]
- group[2]:50
- group[2][1]:100/0.573753
- group[2][1]:Document<stored,indexed,tokenized<text:Juice is sweet 0> stored,indexed,tokenized<catalog:drink>>
- group[2][2]:101/0.573753
- group[2][2]:Document<stored,indexed,tokenized<text:Juice is sweet 1> stored,indexed,tokenized<catalog:drink>>