安装和使用pyltp

 

什么是pyltp:

pyltp 是LTP的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能。

安装 pyltp

测试环境:系统win10 64位, python3.6.5

官方安装是直接使用pip install pyltp命令安装,但是经过多次反复实践,到处是坑,最后放弃了

轮子文件安装:1.下载pyltp-0.2.1-cp36-cp36m-win_amd64.whl文件,百度云,提取码:1gki 

       2.切换到下载文件的目录,执行 pip install pyltp-0.2.1-cp36-cp36m-win_amd64.whl

 

使用 pyltp

使用前请先下载完整模型,百度云,提取码:7qk2,当前模型版本 - 3.4.0

请注意编码:

  pyltp 的所有输入的分析文本和输出的结果的编码均为 UTF-8。

  如果您以非 UTF-8 编码的文本输入进行分析,结果可能为空。请注意源代码文件的默认编码。

   由于 Windows 终端采用 GBK 编码显示,直接输出 pyltp 的分析结果会在终端显示为乱码。您可以将标准输出重定向到文件,以 UTF8 方式查看文件,就可以解决显示乱码的问题。

 

分句:

 使用 pyltp 进行分句示例如下:

'''
使用pyltp进行分句
'''


from pyltp import SentenceSplitter

sents = SentenceSplitter.split('元芳你怎么看?我就趴在窗口上看呗!元芳你怎么这样子了?我哪样子了?')
# print(sents)
# print('
'.join(sents))
sents = '|'.join(sents)
print(sents)

 运行结果如下: 

元芳你怎么看?|我就趴在窗口上看呗!|元芳你怎么这样子了?|我哪样子了?

分词:

使用 pyltp 进行分词示例如下:

 

"""
使用pyltp进行分词
"""

import os
from pyltp import Segmentor


LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径, 模型名称为'cws.model'

segmentor = Segmentor()  # 初始化实例
segmentor.load(cws_model_path)  # 加载模型
words = segmentor.segment('元芳你怎么看')  # 分词
print(type(words))
print(type('|'.join(words)))
print('|'.join(words)) segmentor.release() # 释放模型

 

 运行结果如下:

 

<class 'pyltp.VectorOfString'>
<class 'str'>
元芳|你|怎么|看

 

 

   words segmentor.segment('元芳你怎么看') 的返回值类型是native的VectorOfString类型,可以使用list转换成Python的列表类型 

使用分词外部词典:

   pyltp 分词支持用户使用自定义词典。分词外部词典本身是一个文本文件(plain text),每行指定一个词,编码同样须为 UTF-8,样例如下所示

  苯并芘
  亚硝酸盐

 

示例如下:

'''
使用分词外部词典
'''

import os
from pyltp import Segmentor

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径, 模型名称为'cws.model'

segmentor = Segmentor()
segmentor.load_with_lexicon(cws_model_path, 'plain.txt')  # 加载模型,第二个参数是外部词典文件路径
words = segmentor.segment('亚硝酸盐是一种化学物质')
print('|'.join(words))
segmentor.release()

 运行结果:

[INFO] 2019-05-10 15:18:05 loaded 2 lexicon entries
亚硝酸盐|是|一|种|化学|物质

 

词性标注:

使用 pyltp 进行词性标注

'''
使用 pyltp 进行词性标注
'''

import os
from pyltp import Postagger

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model')  # 分词模型路径, 模型名称为'pos.model'

postagger = Postagger()   # 初始化实例

postagger.load(pos_model_path)  # 加载模型

words = ['元芳', '你', '怎么', '看']   # words是分词模块的返回值,也支持Python原生list,此处使用list

postags = postagger.postag(words)   # 词性标注

print('|'.join(postags))

postagger.release()  # 释放模型

 运行结果:  

nh|r|r|v

 LTP 使用 863 词性标注集,详细请参考 词性标准集。如下图所示

 

命名实体识别

使用 pyltp 进行命名实体识别示例如下

'''
命名实体识别
'''

import os
from pyltp import NamedEntityRecognizer

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model')  # 分词模型路径, 模型名称为'c.model'

recognizer = NamedEntityRecognizer()   # 初始化实例

recognizer.load(ner_model_path)  # 加载模型

words = ['元芳', '你', '怎么', '看']   # 分词模块的返回值
postags = ['nh', 'r', 'r', 'v']   # 词性标注的返回值

netags = recognizer.recognize(words, postags)  # 命名实体识别

print(netags)
print(list(netags))

recognizer.release()  # 释放模型

 其中,words 和 postags 分别为分词和词性标注的结果。同样支持Python原生的list类型。 

运行结果

<pyltp.VectorOfString object at 0x000002B3A798DBD0>
['S-Nh', 'O', 'O', 'O']

 

LTP 采用 BIESO 标注体系。B 表示实体开始词,I表示实体中间词,E表示实体结束词,S表示单独成实体,O表示不构成命名实体。

LTP 提供的命名实体类型为:人名(Nh)、地名(Ns)、机构名(Ni)。

B、I、E、S位置标签和实体类型标签之间用一个横线 - 相连;O标签后没有类型标签。

详细标注请参考 命名实体识别标注集。

NE识别模块的标注结果采用O-S-B-I-E标注形式,其含义为

标记含义
O 这个词不是NE
S 这个词单独构成一个NE
B 这个词为一个NE的开始
I 这个词为一个NE的中间
E 这个词位一个NE的结尾

LTP中的NE 模块识别三种NE,分别如下:

标记含义
Nh 人名
Ni 机构名
Ns 地名

 

依存句法分析

使用 pyltp 进行依存句法分析示例如下

 

"""
依存句法分析
"""

import os
from pyltp import Parser

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model')  # 分词模型路径, 模型名称为'parser.model'

parser = Parser()   # 初始化实例

parser.load(par_model_path)   # 加载模型

words = ['元芳', '你', '怎么', '看']

postags = ['nh', 'r', 'r', 'v']

arcs = parser.parse(words, postags)   # 句法分析

print('	'.join('%d: %s' %(arc.head, arc.relation) for arc in arcs))

parser.release()   # 释放模型

 

 其中,words 和 postags 分别为分词和词性标注的结果。同样支持Python原生的list类型。 

运行结果

 

4: SBV	4: SBV	4: ADV	0: HED

 

 

arc.head 表示依存弧的父节点词的索引。ROOT节点的索引是0,第一个词开始的索引依次为1、2、3…

arc.relation 表示依存弧的关系。

arc.head 表示依存弧的父节点词的索引,arc.relation 表示依存弧的关系。

标注集请参考依存句法关系

关系类型TagDescriptionExample
主谓关系 SBV subject-verb 我送她一束花 (我 <– 送)
动宾关系 VOB 直接宾语,verb-object 我送她一束花 (送 –> 花)
间宾关系 IOB 间接宾语,indirect-object 我送她一束花 (送 –> 她)
前置宾语 FOB 前置宾语,fronting-object 他什么书都读 (书 <– 读)
兼语 DBL double 他请我吃饭 (请 –> 我)
定中关系 ATT attribute 红苹果 (红 <– 苹果)
状中结构 ADV adverbial 非常美丽 (非常 <– 美丽)
动补结构 CMP complement 做完了作业 (做 –> 完)
并列关系 COO coordinate 大山和大海 (大山 –> 大海)
介宾关系 POB preposition-object 在贸易区内 (在 –> 内)
左附加关系 LAD left adjunct 大山和大海 (和 <– 大海)
右附加关系 RAD right adjunct 孩子们 (孩子 –> 们)
独立结构 IS independent structure 两个单句在结构上彼此独立
核心关系 HED head 指整个句子的核心

  

 

语义角色标注

使用 pyltp 进行语义角色标注示例如下

'''
语义角色标注
'''


import os
from pyltp import SementicRoleLabeller

from demo6 import parser

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径
srl_model_path = os.path.join(LTP_DATA_DIR, 'pisrl_win.model')  # 分词模型路径, 模型名称为'pisrl_win.model'

labeller = SementicRoleLabeller()  # 初始化实例
labeller.load(srl_model_path)   # 加载模型

words = ['元芳', '你', '怎么', '看']
postags = ['nh', 'r', 'r', 'v']

arcs = parser()
print(arcs)

  特别注意,windows系统此处用的模型是pirl_win.model

运行结果

[dynet] random seed: 2222491344
[dynet] allocating memory: 2000MB
[dynet] memory allocation done.
4: SBV	4: SBV	4: ADV	0: HED
<pyltp.VectorOfParseResult object at 0x0000026B5902DC30>
3 A0:(1,1)ADV:(2,2)

  

第一个词开始的索引依次为0、1、2…

 

返回结果 roles 是关于多个谓词的语义角色分析的结果。由于一句话中可能不含有语义角色,所以结果可能为空。

 

role.index 代表谓词的索引, role.arguments 代表关于该谓词的若干语义角色。

 

arg.name 表示语义角色类型,arg.range.start 表示该语义角色起始词位置的索引,arg.range.end 表示该语义角色结束词位置的索引。

 

例如上面的例子,由于结果输出一行,所以“元芳你怎么看”有一组语义角色。 其谓词索引为3,即“看”。这个谓词有三个语义角色,范围分别是(0,0)即“元芳”,(1,1)即“你”,(2,2)即“怎么”,类型分别是A0、A0、ADV。

 

arg.name 表示语义角色关系,arg.range.start 表示起始词位置,arg.range.end 表示结束位置。

 

标注集请参考 语义角色关系。

 

语义角色类型说明
ADV adverbial, default tag ( 附加的,默认标记 )
BNE beneficiary ( 受益人 )
CND condition ( 条件 )
DIR direction ( 方向 )
DGR degree ( 程度 )
EXT extent ( 扩展 )
FRQ frequency ( 频率 )
LOC locative ( 地点 )
MNR manner ( 方式 )
PRP purpose or reason ( 目的或原因 )
TMP temporal ( 时间 )
TPC topic ( 主题 )
CRD coordinated arguments ( 并列参数 )
PRD predicate ( 谓语动词 )
PSR possessor ( 持有者 )
PSE possessee ( 被持有 )


 完整示例

import os,sys
from pyltp import SentenceSplitter,Segmentor,Postagger,Parser,NamedEntityRecognizer,SementicRoleLabeller

LTP_DATA_DIR = r'E:python_envltpltp_data_v3.4.0'   # LTP模型目录路径

cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径, 模型名称为'cws.model'

paragraph = '中国进出口银行与中国银行加强合作。中国进出口银行与中国银行加强合作!'

sentence = SentenceSplitter.split(paragraph)[0]  # 分句并取第一句

# 分词
segmentor = Segmentor()   # 初始化
segmentor.load(os.path.join(LTP_DATA_DIR, 'cws.model'))   # 加载模型
words = segmentor.segment(sentence)  # 分词
print(list(words))
print('|'.join(words))

# 词性标注
postagger = Postagger()  # 初始化
postagger.load(os.path.join(LTP_DATA_DIR, 'pos.model'))  # 加载模型
postags = postagger.postag(words)
#postags = postagger.postag(['中国', '进出口', '银行', '与', '中国银行', '加强', '合作', '。'])
print(list(postags))

# 依存句法分析
parser = Parser()
parser.load(os.path.join(LTP_DATA_DIR, 'parser.model'))
arcs = parser.parse(words, postags)
print('	'.join('%d:%s' %(arc.head, arc.relation) for arc in arcs))


# 命名实体识别
recognizer = NamedEntityRecognizer()  # 实例化
recognizer.load(os.path.join(LTP_DATA_DIR, 'ner.model'))
netags = recognizer.recognize(words, postags)
print(list(netags))


# 语义角色标注
labeller = SementicRoleLabeller()
labeller.load(os.path.join(LTP_DATA_DIR, 'pisrl_win.model'))
roles = labeller.label(words, postags, arcs)
for role in roles:
    print(role.index, "".join(
            ["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))

segmentor.release()  # 释放
postagger.release()
parser.release()
recognizer.release()
labeller.release()


参考链接:https://pyltp.readthedocs.io/zh_CN/latest/

     https://github.com/HIT-SCIR/pyltp

你可能感兴趣的